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Abstract
We present stationary expressions for the on-shell time delay operator and for
its trace in quantum-mechanical potential scattering. The trace of this operator
is shown to represent the time delay for a monoenergetic and well-collimated
beam of initial states. For exponentially decaying potentials the total scattering
cross section and the trace of the on-shell time delay operator have analytic
extensions to complex energies, with poles at most at the usual resonance poles
(poles of the analytically continued S-matrix) in the lower half plane and at
their mirror images with respect to the real axis. At real energies close to such
a pole both the scattering cross section and the time delay are approximately of
Breit–Wigner type, the sign of the time delay being related to that of the virial.
These results corroborate the idea that a resonance should show up through a
peak in the scattering cross section and a large (though positive) time delay.

PACS number: 03.65.Nk

1. Introduction

The concept of scattering resonances has been developed and formalized in a very large number
of publications. The principal characteristic of a resonance phenomenon is usually considered
to reside in a sharp peak of the scattering cross section but, as pointed out in the literature (e.g.
chapter 11 of [1], chapter 13 of [2]), this should be concurrent with a large positive time delay.
This idea has been used in various calculations of resonance states or resonances (e.g. [3–5]).
Our aim here is to show that, in situations where a resonance can be associated with a pole
of the analytically continued S-matrix, there will be a strong correlation between peaks in the
scattering cross and large (positive or negative) time delays. More precisely we shall prove
that the time delay will also admit an analytic continuation having poles at the same points as
the S-matrix.

We shall consider scattering theory for self-adjoint Schrödinger operators H = H0 + V

in the complex Hilbert space H = L2(Rn). Here H0 is the usual self-adjoint realization of
the differential operator −� = −∑n

k=1(∂/∂xk)
2 and V is a short range potential. We assume

that n � 2; with some care in the formulation our results are also valid for n = 1.
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The notion of time delay for a scattering situation was introduced by Eisenbud [6]
and Wigner [7]. In the Hilbert space approach it is described by a self-adjoint operator T
commuting with H0. It follows that T is decomposable in the spectral representation of H0

(see equations (6) and (7)): there is a measurable family {T (λ)}λ>0 of bounded operators
acting in L2(Sn−1) such that, if fλ ∈ L2(Sn−1) denotes the component at energy λ of a state
vector f , then (Tf )λ = T (λ)fλ for each f in the domain of T. The results of [6] suggest
that the on-shell time delay operator T (λ) should be related to the S-matrix S(λ) by the
formula T (λ) = −iS(λ)∗ dS(λ)/dλ. The decomposable operator determined by the family
{−iS(λ)∗dS(λ)/dλ}λ>0 is usually called the Eisenbud–Wigner time delay operator.

We mention some other approaches to the question of time delay. Smith [8] proposed
to define time delay as the difference of the sojourn times of the scattering state and of the
initial state in balls of large radius ρ (more precisely one would finally take the limit ρ → ∞).
Thus, if f is a normalized state vector (‖f ‖ = 1) describing the initial state and g = �−f the
associated scattering state (with �− the wave operator corresponding to the limit t → −∞),
then the time delay for this state should be given by the expression

〈f, Tf 〉 = lim
ρ→∞

[∫ ∞

−∞
dt

∫
|x|�ρ

dx|(e−iHt�−f )(x)|2 −
∫ ∞

−∞
dt

∫
|x|�ρ

dx|(e−iH0t f )(x)|2
]
. (1)

The existence of this limit and its relation with the Eisenbud–Wigner time delay operator has
been investigated by various authors (see the references given in the review by Martin [9]
and in [10]). In [10] it was proved, essentially for potentials decaying faster than |x|−2, that
the limit in (1) exists for a dense set of vectors f and coincides with the expectation value
〈f,−iS(λ)∗ dS(λ)/dλf 〉 of the Eisenbud–Wigner time delay operator.

A different time-dependent expression for time delay was given by Lavine [11], namely

〈f,H0T g〉 =
∫ ∞

−∞
〈 e−iH0t f,�∗

−Ṽ �− e−iH0t g〉 dt, (2)

where

Ṽ = V +
i

2
[D,V ] = V +

i

2
DV − i

2
VD (3)

and D = (2i)−1(x · ∇ + ∇ · x) is the generator of the dilation group. Jensen [12] has
studied the expression on the rhs of (2) and proved a theorem giving equality of T with the
Eisenbud–Wigner time delay operator; his result applies to potentials decaying faster than
|x|−1.

In order to arrive at an expression for the differential and the total scattering cross section
in the Hilbert space formulation of scattering, one has to introduce an appropriate description
of an essentially monoenergetic and well-collimated beam of initial states. Under suitable
hypotheses this leads to the usual expression for the differential scattering cross section at
energy λ as the absolute square of the scattering amplitude f (λ;ω → ω′) for scattering from
the initial direction ω into the final direction ω′. Upon integration of the differential scattering
cross section over all final directions and averaging over all initial directions, one finds that
this averaged total scattering cross section σ̄ (λ) is given by a multiple of the square of the
Hilbert–Schmidt norm of the on-shell operator R(λ) := S(λ)− I . In discussing resonances it
then seems natural to define in a similar way a time delay for a beam. The detailed calculation
will be indicated in section 4. It will be found that the time delay for a beam, at energy λ, is
proportional to the trace τ(λ) of the operator T (λ). We note that the trace of T (λ) has also
been considered in a related context by Bollé and Gesztesy [13].

In situations where the S-matrix S(λ) has an analytic continuation into some complex
domain, its poles (and consequently those of the scattering amplitude) lie in the lower half
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complex plane. These poles are often referred to as resonance poles. It turns out that
the averaged total scattering cross section σ̄ (λ) and the time delay τ(λ) then have analytic
continuations too. Since the scattering cross section also involves the complex-conjugate of
the scattering amplitude (or the adjoint S(λ)∗ of the S-matrix), it will have poles also in the
upper half plane. The poles in the upper half plane form conjugate pairs with the resonance
poles in the lower half plane, a pair consisting of a resonance pole and its mirror image with
respect to the real axis. Similarly one finds (see section 5) that the possible poles of the time
delay τ(λ) are located at the points of these conjugate pairs. In certain situations one may
expect the shape of σ̄ (λ) and τ(λ), as functions of the energy λ near a resonance pole, to be
approximately of Breit–Wigner type (see section 6 for details). For the time delay the sign of
such a Breit–Wigner type approximation is related to the sign of Ṽ .

The paper is organized as follows. In section 2 we introduce our notations and present
various preliminary results most of which can be found in the published literature. In
section 3 we determine trace class properties of the on-shell time delay operator and continuity
properties of its integral kernel for potentials with a power decay law. Section 4 is devoted
to the derivation of the expression for the time delay of a beam, and in section 5 we discuss
analyticity properties of the averaged total scattering cross section and of the time delay for
exponentially decaying potentials. In section 6 we present an approximate treatment leading to
Breit–Wigner type expressions for these quantities. In order to avoid burdening the derivation
of properties of the time delay with technical details, we restrict our proofs in section 3 to
situations where the potential V and the virial Ṽ are bounded functions. In the appendix we
indicate how to generalize these results to a class of potentials that may have local singularities.

2. Notations and preliminary results

We denote by Q = (Q1, . . . ,Qn) and P = (P1, . . . , Pn) the n-component position and
momentum operator, byD = (P ·Q+Q ·P)/2 the self-adjoint generator of the dilation group
and by 〈Q〉 the operator of multiplication in L2(Rn) by the function x 
→ 〈x〉 := (1 + |x|2)1/2.
We consider potentials V : Rn → R that can be expressed in the form of a product of three
real-valued functions, V = UA2 = AUA, satisfying the following conditions:

(Cκ) (i) A is a smooth function satisfying A(x) > 0 for all x ∈ Rn and |A(x)| + |∇A(x)| +
|�A(x)| � c〈x〉−κ for some constant c;
(ii) U = U1 + U2 with real U1 and U2 satisfying U1 ∈ L∞(Rn), x · ∇U1 ∈ L∞(Rn), 〈x〉U2 ∈
L∞(Rn) + Lq(Rn) for some q satisfying q � 2 and q > n/2;
(iii) U1x · ∇A

A
belongs to L∞(Rn) and U2x · ∇A

A
∈ L∞(Rn) + Lq(Rn) with q as in (ii).

Two cases of particular interest concern the functions A(x) = 〈x〉−κ and A(x) = e−α〈x〉,
with κ > 0 and α > 0. In the first case condition (iii) can be omitted, its validity follows from
(ii). For technical reasons we shall make stronger assumptions onU2 in various developments.
In particular, we say that V satisfies condition (Cκ,n) if q > n in (ii) and (iii).

We recall that a multiplication operator in L2(Rn) by a function θ ∈ L∞(Rn) + Lq(Rn),
with q as in (ii), is H0-bounded as well as H-bounded. Except for lemma 1, where it suffices
to have κ > 0, we shall always assume that (Cκ) is satisfied for some κ > 1/2. So, roughly
speaking, the potential should decay faster than 〈x〉−1, but the presence of U2 allows for local
singularities of V . Larger values of κ are necessary in order to obtain finer properties of the
time delay operator T (λ): if V decays faster than 〈x〉−n, then T (λ) is a trace class operator
and its integral kernel is continuous. Further on, in section 5, the function A will be assumed
to decay exponentially in order to allow for analytic continuation into the complex plane of
various λ-dependent operators.
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Unless otherwise stated, 〈·, ·〉 and ‖·‖ denote the scalar product and the norm in various
L2-spaces. ‖·‖ will also be used for the norm of operators acting in a Hilbert space or between
two Hilbert spaces. B(K) stands for the set of all bounded everywhere defined linear operators
in a Hilbert space K,B1(K) for the trace class of operators in K. The symbols ‖·‖1 and
‖·‖2 are used for the trace norm and the Hilbert–Schmidt norm, respectively. D(C) denotes
the domain of a linear operator C,R(C) its range and N (C) its null space. I denotes the
identity operator in various spaces. We set R+ = (0,∞),C+ = {z ∈ C | �mz > 0} and
C− = {z ∈ C | �mz < 0}. For z ∈ C+ ∪ C−, we let Ro

z = (H0 − z)−1 and Rz = (H − z)−1

be the resolvent of H0 and H, respectively. We use the same symbol for functions defined on
Rn and for the associated multiplication operators in L2(Rn), e.g. (θf )(x) = θ(x)f (x).

Under the assumptions on V stated above (κ > 1/2) the usual properties of scattering
theory are satisfied (see, e.g., theorem XIII.33 in [14]). The total Hamiltonian H = H0 + V ,
defined as an operator sum on the domain D(H0) of H0, is self-adjoint on this domain
and bounded from below. H has no singularly continuous spectrum, its spectrum σ(H)

consists of an absolutely continuous part covering the interval [0,∞) and possibly of a set of
eigenvalues in (−∞, 0]. In particular, H has no positive eigenvalues [15]. The wave operators
�+ = s − limt→+∞ eiHt e−iH0t and �− = s − limt→−∞ eiHt e−iH0t exist, and the scattering
theory is asymptotically complete: the range of each of the wave operators �± is equal to the
absolutely continuous subspace Hac(H) of the total Hamiltonian H. The scattering operator
S = �∗

+�− is unitary. The existence of the Eisenbud–Wigner time delay operator T and the
equality of the matrix elements 〈f,H0T g〉 with Lavine’s expression (2) have been shown in
[12] under the assumption that the supports of f and g in the spectral representation of H0

belong to a compact interval in (0,∞).
The expression for the virial Ṽ on the rhs of (3) determines a quadratic form on

D(H) = D(H0), which may also be written as Ṽ = AŨA with

Ũ = U + UQ · ∇A
A

+
1

2
Q · ∇U1 − n

2
U2 +

i

2
P ·QU2 − i

2
U2Q · P. (4)

Here, for example, ∇A denotes the multiplication operator by the function ∇A(·) and
P ·Q = ∑n

j=1 PjQj .
The potentials considered here satisfy the hypotheses (H1) and (H2) of our earlier paper

[10] on time delay. We shall use various estimates from that paper. In particular, by lemmas
2, 3 and 6 of [10], we have the following results:

Lemma 1. Assume that V satisfies (Cκ) with κ > 0. Let ϕ ∈ C∞
0 (R) or let ϕ be the function

ϕ(λ) = (λ − z)−1 with z ∈ C\σ(H), and let W be a H0-bounded operator commuting with
Q. Then, for each s ∈ R, all of the following operators (taking closure if necessary) belong to
B(L2(Rn)):

〈Q〉sϕ(H0)〈Q〉−s , 〈Q〉sϕ(H0)W〈Q〉−s , 〈Q〉sPjϕ(H0)〈Q〉−s ,
〈Q〉s−1Dϕ(H0)〈Q〉−s , 〈Q〉sϕ(H)〈Q〉−s , 〈Q〉sϕ(H)W〈Q〉−s ,
〈Q〉sPjϕ(H)〈Q〉−s (j = 1, . . . , n).

In what follows it will be important to know that various operators are smooth relative
to H0 or H. We recall that a closed operator C is said to be H-smooth on an interval J of
R+ if there is a finite constant cJ such that

∫ ∞
−∞ ‖C e−iHtE(J )f ‖2 dt � cJ‖f ‖2 for each

vector f ∈ H, where {E(·)} denotes the spectral measure of H; an equivalent condition is that
‖C[(H −z)−1 −(H − z̄)−1]C∗‖ � cj for all zwith 
e z ∈ J and 0 < �mz < 1. The operator
C is said to be locally H-smooth on R+ if it is H-smooth on each compact J ⊂ R+. We refer
to section XIII.7 of [14] or section 7.1 of [16] for details on the theory of smoothness.
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Often locally H-smooth operators are constructed by proving a Mourre estimate on J [16].
In such a case one even obtains the existence in norm of the limits of C(H − λ± iε)−1C∗ as
ε → +0 for λ ∈ J . A simple example is given by taking C = 〈Q〉−ρ, ρ � 1, and H = H0. In
this case a very easy argument (see equation (7.0.3) of [16]) shows that, given δ > 0, there is
a constant cδ such that, for λ > δ, 0 < ε < 1 and f in the Schwartz space S(Rn):∣∣∣∣ d

dε
〈f, (H0 − λ± iε)−1f 〉

∣∣∣∣ � cδε
−1/2(‖f ‖2 + ‖Df ‖2). (5)

By taking functions f of the form f = ϕ(H0)〈Q〉−ρg, with g ∈ S(Rn) and ϕ ∈ C∞
0 (R) such

that ϕ(µ) = 1 in some neighbourhood of λ, and by using the boundedness of Dϕ(H0)〈Q〉−ρ
(lemma 1), one obtains the convergence in norm of 〈Q〉−ρ(H0 − λ± iε)−1〈Q〉−ρ as ε → +0,
uniformly in λ > δ (for ρ � 1). This result also holds for any ρ > 1/2, and one has the
estimate ‖〈Q〉−ρ(H0 − λ ± iε)−1〈Q〉−ρ‖ � cλ−1/2 for all λ > δ > 0, where c is a constant
depending on ρ and δ (see, for example, the proof of lemma 5 in section XIII.8 of [14] by
considering also the λ-dependence of the occurring constants). For the class of Hamiltonians
considered here (V satisfying (Cκ) for κ > 1/2) it is well known (see, e.g., chapter 4 of [17])
that 〈Q〉−ρ(H − λ± iε)−1〈Q〉−ρ converge in norm as ε → +0 for each λ > 0 and ρ > 1/2,
uniformly in λ on each compact J ⊂ R+, showing that 〈Q〉−ρ is locally H-smooth on R+ for
these values of ρ.

Smooth operators relative to H0 allow the construction of operators mapping between
H = L2(Rn) and L2(Sn−1), where Sn−1 denotes the unit sphere in Rn: Sn−1 = {x ∈ Rn||x| =
1}. The space L2(Sn−1) occurs naturally in the spectral representation of H0: one identifies
L2(Rn)with the spaceK = L2(R+;L2(Sn−1)), the Hilbert space ofL2(Sn−1)-valued functions
defined on R+ = (0,∞), by the unitary mapping F0 given as follows:

(F0f )(λ;ω) = 2−1/2λ(n−2)/4(Ff )(
√
λω), λ ∈ R+, ω ∈ Sn−1, (6)

where F denotes Fourier transformation. For simplicity, we shall write fλ(ω) for (F0f )(λ;ω).
If f ∈ L2(Rn), then the family {fλ} (fλ ∈ L2(Sn−1) for a.a. λ ∈ R+) gives the representative
of f in the spectral representation of H0:

(H0f )λ = λfλ if f ∈ D(H0), and ‖f ‖2
L2(Rn) =

∫ ∞

0
‖fλ‖2

L2(Sn−1) dλ. (7)

The norm in L2(Sn−1) is defined in terms of the induced Lebesgue measure on Sn−1. We shall
denote this measure by dω.

If C is a closed operator such that its adjoint C∗ is locally H0-smooth on R+, then there
exists a measurable family of bounded operators {MC(λ)}λ>0 from L2(Rn) to L2(Sn−1) such
that supλ∈J‖MC(λ)‖ < ∞ for each compact J ⊂ R+,

(Cf )λ = MC(λ)f for a.a. λ > 0, ∀f ∈ D(C) (8)

and

C∗f =
∫

R+
MC(λ)

∗fλ dλ if F0f has compact support in R+. (9)

The proof can be found in section 17.1.2 of [18] (and essentially also in the original paper by
Kato [19] or in lemma 10.20 of [20]). In many situations encountered here the operator C will
in fact be bounded.

We mention a few simple consequences of (8) and (9):

MCZ(λ) = MC(λ)Z if Z ∈ B(L2(Rn)), (10)

Mϕ(H0)C(λ) = MC(λ) if ϕ ∈ C∞
0 (R+) with ϕ(λ) = 1. (11)
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Also, if C1 is a second operator satisfying the conditions imposed on C, and if ϕ ∈ L∞(R)
has compact support in R+, then for f ∈ D(C) and g ∈ D(C1)

〈f,C∗ϕ(H0)C1g〉 =
∫

R+
ϕ(λ)

〈
MC(λ)f,MC1(λ)g

〉
L2(Sn−1)

dλ,

which implies that

C∗ϕ(H0)C1 =
∫

R+
ϕ(λ)MC(λ)

∗MC1(λ) dλ. (12)

IfC1 is unbounded, the left-hand side of (12) should be interpreted as the (bounded) closure of
the densely defined operator C∗ϕ(H0)C1. In general, the integrals in (9) and (12) are Bochner
integrals. In most applications the integrand in (12) will be (at least strongly) continuous in λ
and the integral may be interpreted in the sense of Riemann.

The following consequence of (12) will be important. Assume that, for µ > 0,
the limits of C∗Ro

µ+iεC1 and C∗Ro
µ−iεC1 as ε → +0 exist, or more generally that

limε→+0 C
∗[Ro

µ+iε−Ro
µ−iε

]
C1 exists (e.g. in the norm of B(H)). Assume also that λ 
→ MC(λ)

and λ 
→ MC1(λ) are continuous (e.g. in norm) on R+. Let ϕ ∈ C∞
0 (R) with ϕ(λ) = 1 in

some neighbourhood of µ. Then

lim
ε→+0

C∗[Ro
µ+iε − Ro

µ−iε

]
C1 = lim

ε→+0
C∗[Ro

µ+iε − Ro
µ−iε

]
ϕ(H0)C1

= lim
ε→+0

∫
R+

[
1

λ− µ− iε
− 1

λ− µ + iε

]
ϕ(λ)MC(λ)

∗MC1(λ) dλ

= 2π iMC(µ)
∗MC1(µ),

i.e.,

MC(µ)
∗MC1(µ) = 1

2π i
lim
ε→+0

C∗[Ro
µ+iε − Ro

µ−iε

]
C1. (13)

We consider some special cases that are important in our applications. The results of
examples 2 and 5 will be needed only in the appendix.

Example 1. C = 〈Q〉−ρ , with ρ > 1/2. Then C is H0-smooth on (δ,∞) for each δ > 0.
Thus (at least formally)

MC(λ)f = (Cf )λ = 2−1/2(2π)−n/2λ(n−2)/4
∫

Rn

e−i
√
λω·x〈x〉−ρf (x) dx. (14)

In this case MC(λ) is an integral operator with kernel given by

K(λ;ω, x) = 2−1/2(2π)−n/2λ(n−2)/4 e−i
√
λω·x〈x〉−ρ.

By (13) and the bound for ‖〈Q〉−ρ(H0 − λ ± iε)−1〈Q〉−ρ‖ given below equation (5),
one has ‖M〈Q〉−ρ (λ)‖ � cλ−1/4 for λ � 1. If ρ > n/2,K(λ;ω, x) is a Hilbert–
Schmidt kernel, so in this case M〈Q〉−ρ (λ) is a Hilbert–Schmidt operator. Also, by using
the inequality |eiα − eiβ | � 21−ν |α − β|ν (0 � ν � 1, α, β ∈ R), one easily finds that
λ 
→ M〈Q〉−ρ (λ) is then Hölder continuous in Hilbert–Schmidt norm on R+, with Hölder
index given by min(1, ρ − n/2). In particular, if A is as in (Cκ) and κ > n/2, then
MA(λ) ≡ M〈Q〉−κ (λ)[〈Q〉κA] is a Hilbert–Schmidt operator, the mapping λ 
→ MA(λ) is
Hölder continuous in Hilbert–Schmidt norm and ‖MA(λ)‖ � cλ−1/4 for λ � 1.

Example 2. If (Cκ) is satisfied with κ > 1/2, one can also give a meaning toMAU(λ) and more
generally to MAθ(λ) if θ is the multiplication operator by a function θ ∈ L∞(Rn) + Lq(Rn)

with q � 2 and q > n/2. The operator (Aθ)∗ is locally H0-smooth on R+: if J is a
compact interval in R+ and E0(J ) the associated spectral projection of H0, write (Aθ)∗E0(J )
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asAθ̄ψ(H0)〈Q〉κ ×〈Q〉−κE0(J )withψ ∈ C∞
0 (R+) such thatψ(H0)E0(J ) = E0(J ), observe

from lemma 1 that Aθ̄ψ(H0)〈Q〉κ is bounded and that 〈Q〉−κ is locallyH0-smooth on R+. For
f ∈ D(θ) one has

MAθ(λ)f = (Aθf )λ = 2−1/2(2π)−n/2λ(n−2)/4
∫

Rn

e−i
√
λω·xA(x)θ(x)f (x) dx.

Since (Aθ)(·) belongs to L2(Rn) if κ > n/2 by the Hölder inequality, MAθ(λ) is a Hilbert–
Schmidt operator if κ > n/2 and depends continuously on λ in Hilbert–Schmidt norm.

Example 3. Let C be a closed operator such that C∗ is locally H0-smooth on R+ and such that
the closure of 〈Q〉sψ(H0)C belongs to B(H) for some s > 1/2 and some bounded continuous
function ψ on R+. Then, if λ ∈ R+ is such that ψ(λ) �= 0, one has, for f ∈ D(〈Q〉sψ(H0)C),

MC(λ)f = 1

ψ(λ)
[〈Q〉−s〈Q〉sψ(H0)Cf ]λ = 1

ψ(λ)
M〈Q〉−s (λ)〈Q〉sψ(H0)Cf.

So

MC(λ) = 1

ψ(λ)
M〈Q〉−s (λ)[〈Q〉sψ(H0)C]. (15)

If, furthermore, s > n/2,MC(λ) is Hilbert–Schmidt and depends continuously on λ in
Hilbert–Schmidt norm.

Example 4. C = �∗
±〈Q〉−ρ, ρ > 1/2. By using the intertwining relation �±ϕ(H0) =

ϕ(H)�± and the fact that 〈Q〉−ρ is locally H-smooth on R+, one sees that 〈Q〉−ρ�±
are locally H0-smooth on R+. So M(〈Q〉−ρ�±)∗(λ) exist for each λ > 0 as bounded
operators from L2(Rn) to L2(Sn−1). In particular, if A is as in (Cκ) and κ > 1/2, then
M(A�±)∗(λ) = M(〈Q〉−κ�±)∗(λ)[〈Q〉κA] are well defined. If κ > n/2, these operators are
Hilbert–Schmidt. The continuity in Hilbert–Schmidt norm of the mappings λ 
→ M(A�±)∗(λ)

can be obtained by using mapping properties of the wave operators between weighted
L2-spaces. For example, if κ > n/2 and n � 3, it is known [21] that 〈Q〉κψ(H0)�

∗
±A ∈ B(H)

if ψ ∈ C∞
0 (R+), so that one can apply example 3 to obtain the above-mentioned continuity

property. Alternatively the continuity in Hilbert–Schmidt norm of λ 
→ M(A�±)∗(λ), with
κ > n/2, follows from the expression (33) for M(A�±)∗(λ).

Example 5. If θ is as in example 2, one can define M(A�±)∗θ (λ) by proceeding as in
example 2. If J and ψ are as in example 2, one may write Aθ̄�±E0(J ) = Aθ̄ψ(H)〈Q〉κ ×
〈Q〉−κ�±E0(J ). It follows that Aθ̄�± are locally H0-smooth because 〈Q〉−κ�± are locally
H0-smooth as already pointed out in example 4 and Aθ̄ψ(H)〈Q〉κ ∈ B(H) by lemma 1.

We now introduce the operatorsKo
z = ARo

zA,Kz = ARzA,W
o
z = UKo

z andWz = UKz.
This defines four families of compact operators in C\σ(H) each of which is norm analytic.
The compactness of Ko

z and Wo
z , for z /∈ [0,∞), is obtained by noticing that the function

Rn � k 
→ (k2 − z)−1 belongs to Lp(Rn) for each p > n/2, that A ∈ L2n(Rn) and
UA ∈ [L2n(Rn) + Lq(Rn)] with q as in (ii) of (Cκ) (remember that κ > 1/2, and take into
account lemma 3.13 of [22]). The compactness of Kz and Wz follows from that of Ko

z and
Wo

z respectively by observing that, by the second resolvent equation (I denotes the identity
operator), one has for z ∈ C\σ(H)

Kz = Ko
z

(
I + Wo

z

)−1 = (
I + Wo

z̄

)−1∗
Ko
z , Wz = Wo

z

(
I + Wo

z

)−1
. (16)

Here the operator
(
I + Wo

z

)−1
belongs to B(H) for each z /∈ σ(H) by the analytic

Fredholm theorem (theorem VI.14 of [23]) and by the fact that the eigenvalues of H are real
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(if Wo
z f = −f for some f ∈ H, with z /∈ [0,∞), then VRo

zAf = AWo
z f = −Af =

−(H0 − z)Ro
zAf ; hence Ro

zAf is an eigenvector of H associated with the eigenvalue z).
The operators Ko

z ,Kz,W
o
z and Wz can also be defined for z on the positive real axis R+

by a suitable limiting procedure from the upper or the lower half plane. This can be achieved
for example by using a Mourre estimate and the fact that there are no positive eigenvalues for
H0 and for H. For a different approach, let us consider a pair of H-bounded operators C,N
having the following properties, for some ρ > 1/2: (i) the closures of CRzN and 〈Q〉−ρRzN

are in B(H) for each non-real z, (ii) the closure Cm,ρ of C(H +m)−1〈Q〉ρ is in B(H) for m <

inf σ(H). By the first resolvent equation one has

CRλ± iεN = CR−mN + (m + λ± iε)Cm,ρ〈Q〉−ρRλ± iεN. (17)

Suppose that 〈Q〉−ρRλ± iεN converge in norm as ε → +0. Then (17) implies that the norm
limits of CRλ± iεN as ε → +0 exist. We shall use the notation CRλ± i0N for these limits and
sometimes write C(Rλ+i0 −Rλ−i0)N for CRλ+i0N −CRλ−i0N . Some simple consequences of
(17) are collected in the following lemma, and further applications are given in the appendix.

Lemma 2. (a) For each λ > 0, the operators Ko
λ± i0, Wo

λ± i0, Kλ± i0 and Wλ± i0 exist as norm

limits and are compact. Furthermore
(
I + Wo

λ± i0

)−1 ∈ B(H).
(b) All operators defined in (a) depend continuously on λ in norm.
(c) One hasR

(
Ko
λ± i0

) ⊆ D(U), R(Kλ± i0) ⊆ D(U) andUKo
λ± i0 = Wo

λ± i0,UKλ± i0 = Wλ± i0.
(d) For j = 1, . . . , n one has R

(
Ko
λ± i0

) ⊆ D(Pj ) and R(Kλ± i0) ⊆ D(Pj ). The operators
PjK

o
λ± i0 and PjKλ± i0 belong to B(H).

Proof. (a), (b) The existence of Ko
λ± i0 and Wo

λ± i0 and their continuity as functions of λ are
obtained from (17) by setting H = H0, C = A or C = UA,N = A and ρ = κ (then the
closure of C(H0 + m)−1〈Q〉κ is bounded by lemma 1). To see that

(
I + Wo

λ± i0

)−1 ∈ B(H),
it suffices to know that −1 is not an eigenvalue of Wo

λ± i0 (by the compactness of Wo
λ± i0). If

Wo
λ± i0f = −f for some f in H, one can show that Ro

λ± i0Af (suitably interpreted, see, e.g.,
lemma 8 in section XIII.8 of [14]) defines an eigenvector of H with eigenvalue λ, and we have
seen that such eigenvalues do not exist if λ > 0.

The continuity in norm of z 
→ (
I + Wo

z

)−1
on C+ ∪ R+ and on C− ∪ R+ is now a

consequence of the compactness of Wo
z (see, e.g., lemma 9.5 of [20]). Finally, the existence

and properties of Kλ± i0 and Wλ± i0 follow by setting z = λ± iε in (16) and letting ε → +0.
(c) Let f ∈ H and set fε = ARλ+iεAf . Then fε ∈ D(U), fε → Kλ+i0f and Ufε ≡
Wλ+iεf → Wλ+i0f strongly as ε → +0. Since U is a closed operator, one has
UKλ+i0f = Wλ+i0f .
(d) We take C = PjA,N = A and ρ = κ in (17). After writing CRz = APjRz − i(∂jA)Rz,
and by taking into account lemma 1, one sees that all conditions for obtaining the existence
of the limit in (17) are satisfied. So PjARλ± iεA have norm limits as ε → +0. As in (c),
one finds that R(Kλ± i0) ⊆ D(Pj ) by using the closedness of the operator Pj . The fact that
PjKλ± i0 ∈ B(H) follows from the closed graph theorem (problem III.5.22 in [24]). �

Lemma 3. Assume that V satisfies (Cκ) with κ > 1/2. Then one has, for each λ > 0,

M(A�+)∗(λ)
∗M(A�+)∗(λ) = M(A�−)∗(λ)

∗M(A�−)∗(λ) = 1

2π i
[Kλ+i0 −Kλ−i0] (18)

and

Kλ+i0 −Kλ−i0 = (
I + Wo

λ+i0

)−1∗[
Ko
λ+i0 −Ko

λ−i0

](
I + Wo

λ+i0

)−1
. (19)
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Proof. (i) By taking C = C1 = (A�)∗ in (13), with � either �+ or �−, we get for λ > 0

2π iM(A�)∗(λ)
∗M(A�)∗(λ) = lim

ε→+0
A�

[
Ro
λ+iε − Ro

λ−iε

]
�∗A

= lim
ε→+0

A[Rλ+iε −Rλ−iε]��
∗A = lim

ε→+0
A[Rλ+iε −Rλ−iε]Eac(H)A.

Here Eac(H) = I − Ep(H) is the spectral projection of H onto its absolutely continuous
subspace, with Ep(H) being the projection onto the subspace spanned by the eigenvectors of
H. Since H has no positive eigenvalues, one has limε→0(Rλ+iε −Rλ−iε)Ep(H) = 0 for λ > 0.
So

2π iM(A�)∗(λ)
∗M(A�)∗(λ) = lim

ε→+0
[Kλ+iε −Kλ−iε] = Kλ+i0 −Kλ−i0.

(ii) By (16) we have Kz̄ = (
I + Wo

z

)−1∗
Ko
z̄ . Hence

Kz −Kz̄ = Ko
z

(
I + Wo

z

)−1 − (
I + Wo

z

)−1∗
Ko
z̄

= (
I + Wo

z

)−1∗[(
I + Wo

z

)∗
Ko
z −Ko

z̄

(
I + Wo

z

)](
I + Wo

z

)−1
. (20)

By observing that Ko
z̄W

o
z = ARo

z̄V R
o
zA = Wo

z
∗Ko

z , this leads to the relation

Kz −Kz̄ = (
I + Wo

z

)−1∗(
Ko
z −Ko

z̄

)(
I + Wo

z

)−1
. (21)

Equation (19) follows from (21) by setting z = λ + iε and taking the limit ε → +0. �

Proposition 1. Assume that V satisfies (Cκ) with κ > n/2. Then, for each λ > 0, the
following operators are of trace class : Ko

λ+i0 − Ko
λ−i0,W

o
λ+i0 − Wo

λ−i0,Kλ+i0 − Kλ−i0 and
Wλ+i0 −Wλ−i0. As functions of λ, all of these operators are continuous in trace norm.

Proof. (i) By (13) we have, for λ > 0,

Ko
λ+i0 −Ko

λ−i0 = lim
ε→+0

A
(
Ro
λ+iε − Ro

λ−iε

)
A = 2π iMA(λ)

∗MA(λ). (22)

Since MA(λ) is Hilbert–Schmidt if κ > n/2, the operator Ko
λ+i0 − Ko

λ−i0 is trace class. Its
continuity in trace norm follows from the continuity in Hilbert–Schmidt norm of the mapping
λ 
→ MA(λ) (using the inequality ‖YZ‖1 � ‖Y‖2‖Z‖2).

Similarly one finds from (18) and example 4 that Kλ+i0 − Kλ−i0 is trace class. Its
continuity in trace norm follows from that of Ko

λ+i0 − Ko
λ−i0 and the fact that

(
I + Wo

λ+i0

)−1

is a B(H)-valued norm continuous function of λ on R+ (use equation (19) and the inequality
‖YZ‖1 � ‖Y‖1‖Z‖).
(ii) From a relation analogous to (22) one finds that 〈Q〉−κ[Ro

λ+i0 − Ro
λ−i0

]
A is trace

class. Now, if ϕ ∈ C∞
0 (R) is such that ϕ(µ) = 1 in a neighbourhood of λ, then(

Ro
λ+iε − Ro

λ−iε

)
[I − ϕ(H0)] converges to zero as ε → +0, so that Wo

λ+i0 − Wo
λ−i0 =

[UAϕ(H0)〈Q〉κ ] × [〈Q〉−κ(Ro
λ+i0 − Ro

λ−i0

)
A

]
. Since UAϕ(H0)〈Q〉κ extends to an operator

in B(H) (see lemma 1), it follows that Wo
λ+i0 − Wo

λ−i0 is trace class. Its continuity in trace
norm follows from the continuity in Hilbert–Schmidt norm of the mappings λ 
→ MA(λ) and
λ 
→ M〈Q〉−κ (λ). (iii) To treat the operator Wλ+i0 − Wλ−i0, we choose ϕ as in part (ii) above
and haveWλ+i0 −Wλ−i0 = B1 ×〈Q〉−κ [Rλ+i0 −Rλ−i0]〈Q〉−κ ×B2, whereB1 = UAϕ(H)〈Q〉κ
and B2 = 〈Q〉κA belong to B(H). Setting Wo

z = 〈Q〉κV Ro
z 〈Q〉−κ ,Kz = 〈Q〉−κRz〈Q〉−κ and

Ko
z = 〈Q〉−κRo

z 〈Q〉−κ , one finds from the first resolvent equation that Kz = Ko
z

(
I + Wo

z

)−1 =(
I + Wo

z̄

)−1∗
Ko
z . All equations given in part (ii) of the proof of lemma 3 remain valid if one

replaces Kz,K
o
z and Wo

z by Kz,Ko
z and Wo

z , respectively, so that

〈Q〉−κ [Rλ+i0 −Rλ−i0]〈Q〉−κ =Kλ+i0 −Kλ−i0 = (
I +Wo

λ+i0

)−1∗(
Ko
λ+i0 −Ko

λ−i0

)(
I +Wo

λ+i0

)−1
.
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Now, as in part (i) above, Kλ+i0 − Kλ−i0 is trace class and depends continuously on λ in trace
norm, and

(
I +Wo

λ+i0

)−1
exists and is norm continuous in λ (Wo

z plays the role of the operator
Wo

z for the potential V ′ = A′U ′A′ with A′ = 〈Q〉−κ and U ′ = UA2〈Q〉2κ ). �

3. Time delay operators

In this section we present stationary expressions for the time delay operator and for its trace.
The results are valid for potentials satisfying the condition (Cκ) for suitable values of the
parameters κ and q. In order to avoid certain technicalities occurring when Ũ is an unbounded
operator (i.e. when U2 �= 0), we shall restrict the proofs here to potentials for which U2 = 0,
and we shall indicate in the appendix how to treat the general case and how to interpret our
equations in that case.

We first derive from Lavine’s formula (2) a stationary expression for the time delay
operator T (λ) (this expression has been given in [12] in a somewhat different language). As
pointed out in [12], the integral in (2) is absolutely convergent if {fλ} and {gλ} have compact
support in R+.

Proposition 2. Assume that V satisfies (Cκ) with κ > 1/2. Then

T (λ) = 2π

λ
M(A�−)∗(λ)ŨM(A�−)∗(λ)

∗. (23)

Proof (assuming U2 = 0). Let J be a closed interval in R+ and denote by E0(J ) the spectral
projection of H0 for this interval. By (2) we have, for f, g ∈ R(E0(J )),

〈f,H0T g〉 =
∫ ∞

−∞
〈 e−iH0t f,�∗

−AŨA�− e−iH0t g〉 dt. (24)

We use (9) to rewrite (24) in terms of the operators M(A�−)∗(λ) and then apply Parseval’s
formula:

〈f,H0T g〉 =
∫ ∞

−∞
dt

∫
J

dλ
∫
J

dµ eit (λ−µ)〈M(A�−)∗(λ)
∗fλ, ŨM(A�−)∗(µ)

∗gµ〉

= 2π
∫
J

dλ〈M(A�−)∗(λ)
∗fλ, ŨM(A�−)∗(λ)

∗gλ〉 ≡
∫
J

dλ〈fλ, λT (λ)gλ〉,

which shows that (23) holds for almost all λ in J . �

By proceeding as in the preceding proof, it is easy to derive a stationary expression for
the S-matrix S(λ). The scattering operator S in L2(Rn) satisfies the following relation:

S − I = (�∗
+ −�∗

−)�− = −i
∫ ∞

−∞
(eiH0tAUA e−iHt )�− dt.

This leads to

R(λ) := S(λ)− I = −2π iMAU(λ)M(A�−)∗(λ)
∗. (25)

Proposition 3. Assume that V satisfies (Cκ,n) with κ > n/2. Then T (λ) is a trace class
operator in L2(Sn−1). Its trace τ(λ) is a continuous function of λ (λ > 0) given as follows:

τ(λ) ≡ Tr T (λ) = −i

λ
Tr Ũ (Kλ+i0 −Kλ−i0). (26)
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Alternatively one has the following expressions for τ(λ):

τ(λ) = −i

λ
Tr

{
Ũ

(
I + Wo

λ+i0

)−1∗(
Ko
λ+i0 −Ko

λ−i0

)(
I + Wo

λ+i0

)−1}
(27)

= 2π

λ
Tr

{
MA(λ)

(
I + Wo

λ+i0

)−1
Ũ

(
I + Wo

λ+i0

)−1∗
MA(λ)

∗}. (28)

Note that the trace on the lhs of (26) and that in (28) are taken in L2(Sn−1) whereas the
one on the rhs of (26) and that in (27) are in L2(Rn).

Proof (with U2 = 0, hence Ũ ∈ B(H)). By example 4, M(A�−)∗(λ) is a Hilbert–Schmidt
operator. So T (λ) belongs to the trace class (see (23)). By the cyclicity of the trace we deduce
from (23) that

τ(λ) = 2π

λ
Tr{ŨM(A�−)∗(λ)

∗M(A�−)∗(λ)}. (29)

By virtue of (18), this implies (26). Equation (27) now follows by taking into account
equation (19), and (28) is obtained from (27) by using (22). �

In the situation described in proposition 3, T (λ) is an integral operator in L2(Sn−1): there
is a square-integrable function T (λ; ·, ·) on Sn−1 × Sn−1 such that

[T (λ)h](ω) =
∫
Sn−1

T (λ;ω,ω′)h(ω′) dω′ (ω ∈ Sn−1) (30)

for h ∈ L2(Sn−1). We shall express T (λ) in the form T (λ) = T1(λ)T2(λ)
∗, where T1(λ) and

T2(λ) are Hilbert–Schmidt operators from L2(Rn) to L2(Sn−1). We denote the integral kernel
of the Hilbert–Schmidt operator T1(λ) by T1(λ;ω, x) and that of T2(λ) by T2(λ;ω, x), with
x ∈ Rn and ω ∈ Sn−1. Since the kernel of T2(λ)

∗ : L2(Sn−1) → L2(Rn) is just T2(λ;ω, x),
we have

T (λ;ω,ω′) =
∫

Rn

T1(λ;ω, x)T2(λ;ω′, x) dx. (31)

In terms of this expression for T (λ;ω,ω′), the trace of T (λ) is given as follows (see example
X.1.18 in [24]):

τ(λ) ≡ Tr T (λ) =
∫
Sn−1

T (λ;ω,ω) dω. (32)

We now show that the kernel T (λ;ω,ω′) is continuous in all three arguments. More
precisely, as T (λ;ω,ω′) is defined only for almost all ω,ω′ in Sn−1, given a realization
T (λ;ω,ω′) of this kernel, it can be modified (for each fixed λ) on a set of measure zero in
ω,ω′ such as to become continuous in these two variables (continuity in λ is already contained
in proposition 3).

To prove the preceding assertion, we interpret the rhs of (31) as the scalar product
in L2(Rn) between T2(λ;ω′, ·) and T1(λ;ω, ·). We observe that, for j = 1, 2 and fixed
λ > 0, Tj (λ;ω, ·) defines an element of L2(Rn) for almost all ω ∈ Sn−1, so that each of these
two kernels can be viewed as defining an L2(Rn)-valued function on Sn−1\Nj , where Nj is a
null set in Sn−1 (depending on λ). In the proof of the next proposition we establish the fact
that, after modification of these L2(Rn)-valued functions on a null set in Sn−1, they become
(strongly) continuous in ω and λ. Consequently, after these modifications, the scalar product
in (31) is continuous in λ, ω and ω′.
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Proposition 4. Assume that V satisfies (Cκ,n) with κ > n/2. Then, for each λ > 0,
the time delay operator T (λ) can be represented as an integral operator T (λ;ω,ω′), and
this representation can be chosen in such a way that the map (λ;ω,ω′) 
→ T (λ;ω,ω′)
is continuous on R+ × Sn−1 × Sn−1. Furthermore, the map (λ, ω) 
→ T (λ;ω,ω) is then
continuous on R+ × Sn−1.

Proof (with U2 = 0). As in proposition 10.5 of [20], one may use a stationary expression for
�± to find that, for κ > n/2,

M(A�±)∗(λ) = MA(λ)
(
I + Wo

λ± i0

)−1
. (33)

This gives the following expression for the time delay operator (23):

T (λ) = 2π

λ
MA(λ)

(
I + Wo

λ−i0

)−1
Ũ

(
I + Wo

λ−i0

)−1∗
MA(λ)

∗. (34)

The idea of the proof is explained in the comments preceding the proposition. We take
T1(λ) = 2πλ−1MA(λ)

(
I + Wo

λ−i0

)−1
Ũ , T2(λ) = MA(λ)

(
I + Wo

λ−i0

)−1
. To prove the first

assertion of the proposition, we have to verify the following claim: the L2(Rn)-valued
functions determined by the integral kernels of Tj (λ) become strongly continuous after
modification on a suitable null set in Sn−1.

(i) Let F be a bounded operator in L2(Rn) (in our application F = I or F = Ũ ).
For λ > 0, fix a function G(λ;ω, x) representing the integral kernel of the Hilbert–Schmidt
operatorMA(λ)

(
I + Wo

λ−i0

)−1
F : L2(Rn) → L2(Sn−1). ThenG(λ;ω, ·) defines an element of

L2(Rn) for almost allω ∈ Sn−1: there is a null setNλ in Sn−1 such that, forω /∈ Nλ,G(λ;ω, ·)
determines a continuous mapping �λ

ω : L2(Rn) → C, namely

�λ
ω(f ) =

∫
Rn

G(λ;ω, x)f (x) dx, (35)

with

∣∣�λ
ω(f )

∣∣ �
[∫

Rn

|G(λ;ω, x)|2 dx

]1/2

‖f ‖.

We introduce another continuous mapping �λ
ω : L2(Rn) → C by setting

�λ
ω(f ) = 1√

2(2π)n
λ(n−2)/4

∫
Rn

e−i
√
λω·xA(x)(Yλf )(x) dx, (36)

with Yλ = (
I + Wo

λ−i0

)−1
F . Since A(·)(Yλf )(·) belongs to L1(Rn),�λ

ω is defined for all
ω ∈ Sn−1 and depends continuously on ω and λ in the sense that, for each f ∈ L2(Rn),

∣∣�λ
ω(f )−�λ′

ω′(f )
∣∣ � λ(n−2)/4

√
2(2π)n

‖A(·)‖L2‖Yλ − Yλ′ ‖‖f ‖ +
1√

2(2π)n

×
[∫

Rn

|(λ(n−2)/4 e−i
√
λω·x − λ′(n−2)/4 e−i

√
λ′ω′ ·x)A(x)|2 dx

]1/2

‖Yλ′ ‖‖f ‖. (37)

(ii) For fixed f in L2(Rn) one has �λ
ω(f ) = �λ

ω(f ) for almost all ω ∈ Sn−1\Nλ, since both
�λ
ω(f ) and �λ

ω(f ), viewed as functions of ω, are representatives of the equivalence class in

L2(Sn−1) of the vector MA(λ)
(
I + Wo

λ−i0

)−1
Ff . So, for each f in L2(Rn), there is a null set

Nλ(f ) in Sn−1 such that �λ
ω(f ) = �λ

ω(f ) for all ω /∈ Nλ(f ) (note that Nλ(f ) contains the
null set Nλ introduced in (i) above).
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Let V be a countable dense subset of L2(Rn) and let Mλ = ⋃
f∈V Nλ(f ). Mλ is a null

set in Sn−1 and

�λ
ω(f ) = �λ

ω(f ) ∀f ∈ V,∀ω /∈ Mλ.

By continuity we then have �λ
ω(f ) = �λ

ω(f ) for all f ∈ L2(Rn) and all ω /∈ Mλ. Since, by
(37), (λ, ω) 
→ �λ

ω is strongly continuous as a L2(Rn)-valued mapping, we have completed
the verification of the claim made at the beginning of the proof. The remaining assertions of
the proposition are now straightforward consequences of (37). �

4. Time delay for scattering of a beam

As pointed out in the introduction, in order to relate the behaviour of the time delay to that of
the scattering cross section, one should define the time delay for an essentially monoenergetic
and well-collimated beam of initial states. This kind of time delay was considered in [25].
Here we apply the description of a beam that was used for the derivation of the scattering cross
section in section 7-3 of [20].

Let E be the set of wavefunctions g ∈ L2(Rn) satisfying (i) ‖g‖ = 1, (ii) the Fourier
transform g̃ of g belongs to L∞(Rn) and (iii) there is ωo ∈ Sn−1 such that the support of
g̃ is a compact subset of the open cone {k ∈ Rn | k · ωo > 0}. For fixed g ∈ E , we
denote by � the (n− 1)-dimensional hyperplane orthogonal to ωo and consider an ensemble
of states obtained by translating g by vectors b ∈ �, with a uniform distribution over �
of the values of b. Thus the beam generated by g is the collection {U(b)g | b ∈ �}, with
[U(b)g](x) = g(x − b), x ∈ Rn. We denote by �(g) the support of g in the spectral
representation of H0, i.e. �(g) = {λ ∈ R+ | √λω ∈ supp g̃ for some ω ∈ Sn−1}.

The basic result for determining physical quantities defined in terms of a beam is given
in the following lemma for the proof of which we refer to the appendix.

Lemma 4. Consider a Hilbert spaceK ≡ L2(O,m) over some measure space (O,m) and let g
be a vector in E . For λ ∈ R+, letX1(λ),X2(λ) : K → L2(Sn−1) be Hilbert–Schmidt operators
satisfying ‖Xj(λ)‖2 � const < ∞ for all λ ∈ �(g), (j = 1, 2). Set Y (λ) = X1(λ)X2(λ)

∗

and let Y = {Y (λ)} be the associated decomposable operator in L2(Rn). Then∫
�

db〈U(b)g, YU(b)g〉 = (2π)n−1
∫
�(g)

λ−(n−1)/2 dλ
∫
Sn−1

Y (λ;ω,ω)[ω · ωo]−1|gλ(ω)|2 dω.

(38)

Here Y (λ;ω,ω′) is the integral kernel of the trace class operator Y (λ), given as follows in
terms of the kernels Xj(λ;ω, ξ) of the Hilbert–Schmidt operators Xj(λ)(j = 1, 2):

Y (λ;ω,ω′) =
∫
O
X1(λ;ω, ξ)X2(λ;ω′, ξ)m(dξ). (39)

To obtain physically relevant information from this lemma, one will choose the
wavefunction g such that its momentum support is very small. Suppose that (λ, ω) 
→
Y (λ, ω, ω) is continuous, and consider a sequence {g�} in E such that the support of g̃�
(the Fourier transform of g�) shrinks to a single point ko = √

λoωo as � → ∞. Then the
expression on the rhs of (38) will converge to (2π)n−1λ

−(n−1)/2
o Y (λo, ωo, ωo). Upon averaging

this quantity over all initial directions ωo, one obtains (�n denotes the surface area of Sn−1

and � the (n− 1)-dimensional hyperplane orthogonal to ωo)

1

�n

∫
Sn−1

dωo lim
�→∞

∫
�

db〈U(b)g�, YU(b)g�〉 = (2π)n−1

λ
(n−1)/2
o �n

Tr Y (λo). (40)
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As an example, let us take K = L2(Rn),Xj (λ) = Tj (λ) with Tj (λ) as in (31). Then Y (λ)
is just the on-shell time delay operator. So, under the conditions of proposition 4, the time
delay for a beam of energy λ, averaged over all initial directions, is given by the formula

τ̄ (λ) = (2π)n−1

λ(n−1)/2�n

Tr T (λ) = (2π)n−1

λ(n+1)/2�ni
Tr Ũ (Kλ+i0 − (Kλ−i0). (41)

Another example is obtained by taking K = L2(Sn−1),X1(λ) = X2(λ) = R(λ)∗,
with R(λ) as in (25). Then Tr Y (λ) = TrR(λ)∗R(λ) = ‖R(λ)‖2

2. Since the probability
for scattering of g into a cone C (not containing the forward direction ωo) is given as∫
�(g)

dλ
∫
C∩Sn−1 |[R(λ)gλ](ω)|2 dω (see [26] or lemma 6.7 of [20]), the averaged total scattering

cross section σ̄ (λ) at energy λ, for scattering of a beam, is

σ̄ (λ) = (2π)n−1

�n

λ−(n−1)/2‖R(λ)‖2
2. (42)

It will be useful to know expressions for σ̄ (λ) similar to (26)–(28). By using the stationary
formula (25) for R(λ), the cyclicity of the trace and lemma 3, one finds that

�n

(2π)n+1
λ(n−1)/2σ̄ (λ) = 1

(2π)2
Tr[R(λ)∗R(λ)]

= Tr[MAU(λ)
∗MAU(λ)M(A�−)∗(λ)

∗M(A�−)∗(λ)]

= 1

2π i
Tr[MAU(λ)

∗MAU(λ)(Kλ+i0 −Kλ−i0)] (43)

= Tr
[
MAU(λ)

(
I + Wo

λ+i0

)−1∗
MA(λ)

∗MA(λ)
(
I + Wo

λ+i0

)−1
MAU(λ)

∗]. (44)

5. Analyticity of time delay and scattering cross section

For the remainder of the paper we consider exponentially decaying potentials. More precisely,
we assume that V = UA2 is as follows :

(Eα) (i) A(x) = e−α〈x〉 with α > 0;
(ii) U = U1 + U2 with real U1 and U2 satisfying 〈x〉U1 ∈ L∞(Rn), x · ∇U1 ∈

L∞(Rn); 〈x〉U2 ∈ L∞(Rn) + Lq(Rn) for some q satisfying q � 2 and q > n/2.

We say that V satisfies condition (Eα,n) if q > n in (ii).
Since [(∂jA)/A](x) = −αxj/〈x〉, the operator Ũ from equation (4) here takes the

following form:

Ũ = Ũ1 + Ũ2 +
i

2
P ·QU2 − i

2
U2Q · P (45)

with

Ũ1 = U1 − α〈Q〉−1Q2U1 +
1

2
Q · ∇U1 and Ũ2 =

(
1 − n

2

)
U2 − α〈Q〉−1Q2U2. (46)

We note that Ũ1 ∈ L∞(Rn) and Ũ2 ∈ L∞(Rn) + Lq(Rn) with q as in (Eα).
We shall consider integral operators M±

Aθ (z) : L2(Rn) → L2(Sn−1) defined by kernels
2−1/2(2π)−n/2z(n−2)/4 e−α〈x〉θ(x) e± i

√
zω·x , where θ : Rn → C and z ∈ C\(−∞, 0]. Particular

operators of this form are M±
A (z) (θ ≡ 1) and M±

AU(z) (θ = U). Here and in what
follows the principal branch of the occurring roots is chosen (i.e. the branch cut is along
(−∞, 0]). For z ∈ C, we write z = ξ + iη (ξ, η ∈ R) and define a complex domain � by
� = {z ∈ C\(−∞, 0] | |�m√

z| < α} = {z ∈ C\(−∞, 0] | η2 < 4α2(ξ + α2)}. We note that
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� is symmetric with respect to the real axis; apart from the cut on (−α2, 0], it coincides with
the interior of the parabola given by η2 = 4α2(ξ + α2).

Lemma 5. Let θ ∈ L∞(Rn) + Lq(Rn) with q � 2 and q > n/2. Then we have the following.

(a) M±
Aθ (z) are Hilbert–Schmidt operators for each z ∈ �.

(b) The functions z 
→ M±
Aθ (z) are holomorphic in Hilbert–Schmidt norm in the domain �.

(c) The functions z 
→ M±
Aθ (z̄)

∗M±
Aθ (z) are holomorphic in trace norm in the domain �.

Proof. The result of (a) is a consequence of the following bound for the Hilbert–Schmidt
norm of M±

Aθ (z),

∥∥M±
Aθ (z)

∥∥2
2 � �n

2(2π)n
|z|(n−2)/2

∫
Rn

|θ(x)|2 e−2α〈x〉 e2|�m√
z||x| dx (47)

by observing that the integral is finite for each z ∈ � (using the Hölder inequality).
For (b), it is enough to show that, as functions of z ∈ �\(−∞, 0], the mappings
(x, ω) 
→ e−α〈x〉 e± i

√
zω·xθ(x) are differentiable in L2(Rn × Sn−1). This is easily obtained by

using the Lebesgue dominated convergence theorem, taking into account the bound

|e± iζω·x − e± iζ ′ω·x | = | e± iζω·x{1 − e± i(ζ ′−ζ )ω·x}|
� |ω · x||ζ − ζ ′|e|�m√

z||x| max{1, |e± i(ζ ′−ζ )ω·x |}.
Finally (c) is a simple consequence of (b) (using ‖YZ‖1 � ‖Y‖2‖Z‖2). �

We introduce the notation
{
Ko+
z

}
for the restriction of the family

{
Ko
z

}
to the upper half

complex plane C+ = {z ∈ C | �mz > 0}. Similarly, for z ∈ C+, we shall write Wo+
z ,K+

z

and W +
z for the operator Wo

z ,Kz and Wz, respectively. We are interested in finding analytic
extensions of these families of operators across R+ into the lower half complex plane. These
extensions will be denoted by K̂o+

z , Ŵ o+
z etc. So for example there will be an analytic B(H)-

valued function z 
→ K̂o+
z on C+ ∪ � such that K̂o+

z = Ko+
z = Ko

z for z ∈ C+. For z in the
lower half complex plane C− we shall denote the operators Ko

z ,W
o
z etc by K̂o−

z , Ŵ o−
z etc and

their analytic extensions into the upper half plane by K̂o−
z , Ŵ o−

z etc.

Lemma 6. Assume that V satisfies (Eα). Then we have the following.

(a) The functions z 
→ Ko+
z and z 
→ Wo+

z have holomorphic continuations in norm, denoted
by K̂o+

z and Ŵ o+
z respectively, to C+ ∪ �. The functions z 
→ Ko−

z and z 
→ Wo−
z have

holomorphic continuations in norm, denoted K̂o−
z and Ŵ o−

z respectively, to C− ∪�.

(b) The operators K̂o±
z and Ŵ o±

z are compact for each z ∈ �.

(c) For z ∈ � one has
[
K̂o−
z

]∗ = K̂o+
z̄ .

(d) For z ∈ � one has R
(
K̂o±
z

) ⊂ D(U) and UK̂o±
z = Ŵ o±

z .

(e) The functions� � z 
→ (
I +Ŵ o±

z

)−1
are meromorphic in norm. The poles of

(
I +Ŵ o+

z

)−1

(if any) lie in the lower half plane (i.e. in �∩ C−), those of
(
I + Ŵ o−

z

)−1
in the upper half

plane, and the residues at these poles are finite rank operators.
(f) The functions z 
→ K±

z have meromorphic extensions, as compact operator-valued
functions, to the domains C± ∪�.

Proof. (a), (b) Let z ∈ C+. For b > 1, denote by Eb the spectral projection of H0 for the
interval (1/b, b) and set E⊥

b = I − Eb. By taking into account (12) and then using Cauchy’s
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theorem, we get

Ko+
z = ARo

zEbA + ARo
zE

⊥
b A =

∫ b

1/b

1

λ− z
MA(λ)

∗MA(λ) dλ + ARo
zE

⊥
b A

=
∫
γ

1

λ− z
MA(ζ̄ )

∗MA(ζ ) dζ + ARo
zE

⊥
b A, (48)

where γ is any smooth curve in � ∩ C− leading from the point 1/b to the point b.
Equation (48) implies that Ko+

z admits a holomorphic extension to the domain �\{(0, 1/b] ∪
[b,∞)}, hence to � since b is arbitrary. Equation (48) also shows that the thus defined
operators K̂o+

z (z ∈ �) are compact. The other assertions in (a) and (b) are obtained similarly.
(c) This follows from the relation Ko

z
∗ = Ko

z̄ by analytic continuation.
(d) If z ∈ C+, h ∈ D(U) and g ∈ H, we have

〈
Uh,Ko+

z g
〉 = 〈

h,Wo+
z g

〉
. By analytic

continuation we get that
〈
Uh, K̂o+

z g
〉 = 〈

h, Ŵ o+
z g

〉
. This shows that K̂o+

z g ∈ D(U) and
UK̂o+

z g = Ŵ o+
z g. See also lemma 2(c).

(e) As explained after equation (16), the operator I + Wo+
z (resp. I + Wo−

z ) is invertible for
each z ∈ C+ ∪ R+ (resp. z ∈ C− ∪ R+), with inverse in B(H). Therefore the statements of (e)
are consequences of the analytic Fredholm theorem (see, e.g., [23]).
(f) This follows from (a),(b) and (e) by taking into account equation (16). �

Proposition 5. Assume that V satisfies (Eα). Then we have the following.

(a) For z ∈ �, the operators K̂o+
z − K̂o−

z and Ŵ o+
z − Ŵ o−

z are trace class and given as follows:

K̂o+
z − K̂o−

z = 2π iMA(z̄)
∗MA(z) (49)

and

Ŵ o+
z − Ŵ o−

z = 2π iMAU(z̄)
∗MA(z). (50)

(b) The functions z 
→ K̂o+
z − K̂o−

z and z 
→ Ŵ o+
z − Ŵ o−

z are holomorphic in trace norm in
the domain �.
(c) The function � � z 
→ K̂+

z − K̂−
z is meromorphic in trace norm.

Proof. Equations (49) and (50) hold for real z, hence for all z ∈ � by analytic continuation.
The holomorphy of these functions in trace norm then follows from lemma 5(c). The fact
that the meromorphy of the difference K̂+

z − K̂−
z holds in trace norm is obtained from (21) by

taking into account the result of (b) and lemma 6. �

Proposition 5 implies that the trace of the time delay τ(λ), defined on R+ and given by
(26), has a meromorphic continuation to the domain �, namely

τ(z) = −i

z
Tr

{
Ũ

[
K̂+
z − K̂−

z

]}
. (51)

The possible poles of this function in the lower half plane lie in the set�− := {z ∈ �∩ C− | (I+
Ŵ o+

z ) is not invertible}. The points in �− are often referred to as resonance poles, because the

poles of the meromorphically continued S-matrix S(z) = I −2π iMA(z)
(
I + Ŵ o+

z

)−1
MAU(z̄)

∗

(see, e.g., proposition 10.12 of [20]) must belong to �−. In many situations each point in �−

is in fact a pole of S(z) (we refer to [27, 28] for more detailed investigations of this question).
In our context it is important to realize that poles of the time delay in C− will coincide with
resonance poles. Also one may expect that a resonance pole will often be a pole of both the
S-matrix and the time delay. This corroborates the idea mentioned in the introduction that a



Time delay and resonances in potential scattering 9247

physical resonance should involve a large scattering cross section and a large (though positive)
time delay. Section 6 below contains some details on this.

The poles in C− of the meromorphic continuations of the physical quantities τ̄ (λ) and
σ̄ (λ) determined by the theory of scattering of a beam (equations (41) and (43)) will also
belong to the set �− of resonance poles; indeed we have τ̄ (z) = (2π)n−1z−(n−1)/2τ(z)/�n

and

σ̄ (z) = (2π)n

�ni
z−(n−1)/2 Tr

[
MAU(z̄)

∗MAU(z)
(
K̂+
z − K̂−

z

)]
. (52)

However, equations (51) and (52) show that these quantities may also have poles in the
upper half plane C+, namely in the set �+ := {z ∈ � ∩ C+|(I + Ŵ o−

z ) is not invertible}.
When approximating the time delay or the scattering cross section at real values of z by pole
contributions, the poles in �+ will have to be taken into account along with the resonance
poles in the lower half plane (see section 6).

In the preceding context it is interesting and useful to know that poles in the upper half
plane and poles in the lower half plane appear in pairs in the sense that z ∈ �+ if and only if
z̄ ∈ �−. Indeed, proposition 6(a) below shows for example that if the null space N

(
I + Ŵ o−

z

)
of the operator I + Ŵ o−

z is non-trivial (i.e. of dimension at least 1), then so is the null space of(
I + Ŵ o+

z̄

)∗
, which implies that N

(
I + Ŵ o+

z̄

) �= {0} (because N (I + K) and N (I + K∗) have
the same dimension if K is compact; see, e.g., theorem 6.8 in [29]).

Proposition 6. (a) Let V satisfy (Eα), z ∈ � and f ∈ N
(
I + Ŵ o−

z

)
. Then K̂o−

z f ∈
N

((
I + Ŵ o+

z̄

)∗)
, and K̂o−

z f �= 0 if f �= 0.
(b) Assume that V satisfies condition (Eα,n). If z ∈ � and g ∈ N

((
I + Ŵ o+

z

)∗)
, then

Ug ∈ N
(
I + Ŵ o−

z̄

)
, and Ug �= 0 if g �= 0.

(c) Under the assumption of (b) one has for all z ∈ �:

dimN
(
I + Ŵ o−

z

) = dimN
((
I + Ŵ o+

z̄

)∗) = dimN
(
I + Ŵ o+

z̄

)
.

Proof. We shall use the relation
[
K̂o+
z

]∗ = K̂o−
z̄ from lemma 6.

(a) Let f ∈ N
(
I + Ŵ o−

z

)
. Then f = −Ŵ o−

z f = Uh with h = −K̂o−
z f ∈ D(U)

(lemma 6(d)). So
(
I + Ŵ o+

z̄

)∗
h = (

I + K̂o−
z U

)
h = h + K̂o−

z f = h − h = 0. If f �= 0, we
must have h �= 0 (since f = Uh).
(b) Let g ∈ N

((
I + Ŵ o+

z

)∗)
. Then g = −Ŵ o+∗

z g. By lemma 9(b) given in the appendix, we
then have g ∈ D(U) andUg = −Ŵ o−

z̄ Ug. SoUg ∈ N
(
I +Ŵ o−

z̄

)
. Also, since g = −K̂o+∗

z Ug,
we must have Ug �= 0 if g �= 0.
(c) By the results of (a) and (b) there is a one-to-one correspondence between N

(
I + Ŵ o−

z

)
and N

((
I + Ŵ o+

z̄

)∗)
. The second equality follows from theorem 6.8 of [29] mentioned above.

�

We add two results which are related to proposition 6 and which will be of interest in the
next section. We write

(
K̂o±
ζ

)′
for

[
d/dzK̂o±

z

]∣∣
z=ζ .

Lemma 7. (a) Let V satisfy (Eα) and let f ∈ N
(
I + Ŵ o+

z

)
, with z = λ − i� ∈ � for some

λ > 0 and � > 0. Then

〈f,MA(z̄)
∗MA(z)f 〉 = �

2π

∫ 1

−1

〈
f,

(
K̂o−
λ+is�

)′
f

〉
ds. (53)

(b) Let V satisfy (Eα,n) and let g ∈ N
((
I + Ŵ o+

z

)∗)
, with z as in (a). Then

〈g,MAU(z̄)
∗MAU(z)g〉 = �

2π

∫ 1

−1

〈
Ug,

(
K̂o+
λ+is�

)′
Ug

〉
ds. (54)
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Proof. (a) Let f ∈ N
(
I + Ŵ o+

z

)
. Then, as in the proof of proposition 6, we have f = Uh

with h = −K̂o+
z f satisfying

(
I + Ŵ o−

z̄

)∗
h = 0. Thus we have〈

h,
(
I + Ŵ o−

z̄

)
f

〉 = 0. (55)

Also, by taking into account (49) and lemma 6(d) we obtain

2π i〈f,MA(z̄)
∗MA(z)f 〉 = 〈

h,
(
Ŵ o+

z − Ŵ o−
z

)
f

〉 = −〈
h,

(
I + Ŵ o−

z

)
f

〉
. (56)

Addition of (55) and (56) leads to

2π i〈f,MA(z̄)
∗MA(z)f 〉 = 〈

h,
(
Ŵ o−

z̄ − Ŵ o−
z

)
f

〉 = 〈
f,

(
K̂o−
z̄ − K̂o−

z

)
f

〉
. (57)

(53) follows from (57) by virtue of the mean value theorem.
(b) By proposition 6(b) we have Ug ∈ N

(
I + Ŵ o−

z̄

)
. A simple adjustment of the arguments

used in (a) above then leads to

2π i〈g,MAU(z̄)
∗MAU(z)g〉 = 2π i〈Ug,MA(z̄)

∗MA(z)Ug〉
= 〈

Ug,
(
K̂o+
z̄ − K̂o+

z

)
Ug

〉
,

from which (54) follows with the mean value theorem. �

6. A Breit–Wigner type approximation

It is interesting to consider the situation where a scattering pole (and hence also its conjugate
pole) lies very close to the real axis. So let us assume that zo = λo − i� (0 < � � λo) is
a resonance pole, with z̄o = λo + i� its conjugate pole. Assume, furthermore, that there is a
number m not less than 3 such that the disc {|z − λo| < m�} of radius m� centred at λo is
contained in � and contains no resonance poles other than zo. One can then expect to obtain
a reasonable approximation for the time delay (given by equation (28)) and the scattering
cross section (equation (44)) at energies λ near λo by evaluating

(
I +Wo

λ+i0

)−1
in terms of the

Laurent series at zo of
(
I + Ŵ o+

z

)−1
and by omitting terms in (λ− zo)

k with k � 0.
Following [30] we write the power series for I + Ŵ o+

z at zo as

I + Ŵ o+
z =

∞∑
k=0

Ak(z− zo)
k, Ak ∈ B(H), (58)

so that A0 = I + Ŵ o+
zo

and A1 = (
Ŵ o+

zo

)′
:= [

d/dzŴ o+
z

]∣∣
z=zo . Since z 
→ Ŵ o+

z is a

holomorphic operator-valued function, the number −1 is an eigenvalue of Ŵ o+
z for each z

in some neighbourhood of zo. The associated projection is

P(z) = 1

2π i

∫
γ

(
ζ + Ŵ o+

z

)−1
dζ, (59)

where γ = {ζ ∈ C | |ζ − 1| = ε} for ε sufficiently small [24, 30]. We set Po = P(zo). Let
us make the additional hypothesis that the eigenvalue −1 of Ŵ o+

zo
has algebraic multiplicity

1. Then Po is an idempotent operator of rank 1. In particular, the null space of I + Ŵ o+
zo

is
one-dimensional. We fix a normalized vector χ in this null space: Ŵ o+

zo
χ = −χ, ‖χ‖ = 1

and Poχ = χ . Then Po has the form Po = |χ〉〈η| for some η ∈ H, with 〈η, χ〉 = 1. It
follows that P∗

o η = η, so that η ∈ N
((
I + Ŵ o+

zo

)∗)
since P∗

o is the projection associated with
the eigenvalue −1 of the adjoint Ŵ o+∗

zo
of Ŵ o+

zo
. We observe that ‖η‖ � 1 (since 〈η, χ〉 = 1),

with strict inequality in general (equality can hold only if P∗
o = Po, i.e. if Po is an orthogonal

projection).
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Lemma 8. Assume as above that Po is an operator of rank 1,Po = |χ〉〈η|. Also assume that
a := 〈

η,
(
Ŵ o+

zo

)′
χ

〉 �= 0. Then the pole at zo of
(
I + Ŵ o+

z

)−1
is of order 1 (i.e. it is a simple

pole) and the associated Laurent series implies that

(
I + Ŵ o+

z

)−1 = Po

a(z − zo)
+ φ(z), (60)

where φ is holomorphic in the domain {|z− λo| < m�}.
Proof. By the analytic Fredholm theorem [23] there is N < ∞ such that the Laurent series of(
I + Ŵ o+

z

)−1
at zo has the form

(
I + Ŵ o+

z

)−1 =
∞∑

k=−N
Bk(z − zo)

k, Bk ∈ B(H). (61)

Under the hypotheses of the lemma, we must have N = 1 (i.e. Bk = 0 for k < −1) and
B−1 = B−1Po = PoB−1 = PoB−1Po. This follows from theorem 2 of [30] the hypotheses
of which are easily seen to be satisfied: hypothesis (ii) is just the condition that a �= 0, and
hypothesis (i), namely A0

2f = 0 ⇒ A0f = 0, is not difficult to check: if f is such that
A0

2f = 0, then A0f = cχ for some constant c (because N (A0) is one-dimensional in our
situation), and then c = 〈η, cχ〉 = 〈η,A0f 〉 = 〈A∗

0η, f 〉 = 0 because A∗
0η = 0.

The equation
∑∞

k=−1 Bk(z − zo)
k × ∑∞

j=0 Aj(z − zo)
j = I now shows that I =

B−1A1 + B0A0. Since A0χ = 0 this implies that χ = B−1A1χ = B−1PoA1χ = aB−1χ . So
B−1 = B−1Po = |B−1χ〉〈η| = (1/a)|χ〉〈η| = (1/a)Po, which proves (60). �

By inserting in (28) and (44) the approximate expressions [a(λ − zo)]−1Po and

[ā(λ − z̄o)]−1P∗
o for

(
I + Wo

λ+i0

)−1
and

(
I + Wo

λ+i0

)−1∗
respectively, we get that in this

approximation (designated by the symbol �)

τ̄ (λ) � (2π)n

�n

λ−(n+1)/2

|a|2[(λ− λo)2 + �2]
Tr[MA(λ)PoŨP∗

oMA(λ)
∗]

= (2π)n

�n

λ−(n+1)/2

|a|2[(λ− λo)2 + �2]
Tr[MA(λ)|χ〉〈η, Ũη〉〈χ |MA(λ)

∗]

= (2π)n

�n

λ−(n+1)/2

|a|2[(λ− λo)2 + �2]
〈η, Ũη〉‖MA(λ)χ‖2 (62)

and

σ̄ (λ) � (2π)n+1

�n

λ−(n−1)/2

|a|2[(λ− λo)2 + �2]
Tr[MAU(λ)P∗

oMA(λ)
∗MA(λ)PoMAU(λ)

∗]

= (2π)n+1

�n

λ−(n−1)/2

|a|2[(λ− λo)2 + �2]
‖MAU(λ)η‖2‖MA(λ)χ‖2. (63)

Let us mention some interesting features of these expressions. As in the Breit–Wigner
formula, both (62) and (63) have a factor (λ − λo)

2 + �2 in the denominator, and both
contain a factor ‖MA(λ)χ‖2 in the numerator. By the mean value theorem, replacement
of ‖MA(λ)χ‖2 by 〈χ,MA(z̄o)

∗MA(zo)χ〉 will introduce an error proportional to �, and
〈χ,MA(z̄o)

∗MA(zo)χ〉 = c� for some constant c (depending on V and zo; see lemma 7(a)). In
this sense the approximate time delay τ̄ (λ), equation (62), contains a factor �/[(λ−λo)

2 +�2],
and its sign is determined by the quantity 〈η, Ũη〉. The fact that it is the virial Ṽ rather than
the potential itself that is important in determining the sign of the time delay has also been
stressed in earlier publications (e.g. [11, 31]).
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The averaged total scattering cross section σ̄ (λ), equation (63), contains, apart
from ‖MA(λ)χ‖2, also a factor ‖MAU(λ)η‖2. As above, its replacement by the
quantity 〈η,MAU(z̄o)

∗MAU(zo)η〉 amounts to an error proportional to �, and again
〈η,MAU(z̄o)

∗MAU(zo)η〉 = c′� for some constant c′ by lemma 7(b). So, in such an
approximation, σ̄ (λ) will contain a factor �2/[(λ − λo)

2 + �2], i.e., it will be of the usual
Breit–Wigner type.
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Appendix. Time delay for potentials with local singularities

In section 3 we have limited the proofs of different properties of time delay to potentials having
some degree of regularity, in particular no local singularities (i.e. potentials with U2 = 0). In
general, the operator Ũ of equation (4) will have the following form:

Ũ = Ũ1 + Ũ2 +
i

2
P ·QU2 − i

2
U2Q · P, (A.1)

with Ũ1 and Ũ2 given by (46). Each term in (A.1) gives a contribution to the time delay
operator, as shown for example by (2). We shall discuss here the contributions from Ũ2 and
P · QU2. We recall that the functions Ũ2 and 〈·〉U2 belong to L∞(Rn) + Lq(Rn), where q
satisfies q � 2 and q > n/2 (even q > n in propositions 3 and 4, also in section 6).

A first way of avoiding the occurrence of unbounded operators in the expression for T (λ)
is to fix a real number m < inf σ(H) and to define the operator Z = 〈Q〉κ(H + m)−1Ṽ (H +
m)−1〈Q〉κ , which belongs to B(H) and in terms of which one obtains from (2) the following
formula for T (λ):

T (λ) = 2π(λ + m)2

λ
M(〈Q〉−κ�−)∗(λ)ZM(〈Q〉−κ�−)∗(λ)

∗. (A.2)

One then has τ(λ) = −iλ−1(λ + m)2 Tr[Z〈Q〉−κ(Rλ+i0 − Rλ−i0)〈Q〉−κ ] for all potentials
satisfying (Cκ) with κ > n/2. By evaluating commutators, one can transform this expression,
for exponentially decaying potentials V (satisfying (Eα)), into the form

τ(λ) = −i

λ
Tr{[Ũ1 + L(λ)][Kλ+i0 −Kλ−i0]}, (A.3)

where L : R+ → B(H) is a polynomial function of degree 2 given in terms of
U2, (H + m)−1, Pj , A and its derivatives. Equation (A.3) leads to the properties of the
meromorphic continuation τ(z) of τ(λ) already discussed in section 5. The continuity
properties of the kernel T (λ;ω,ω′) of T (λ), proposition 4, can be obtained as in the proof
of that proposition by taking for example T1(λ) = 2πλ−1(λ + m)2M(〈Q〉−κ�−)∗(λ)Z and
T2(λ) = M(〈Q〉−κ�−)∗(λ) = M〈Q〉−κ (λ) × 〈Q〉κψ(H0)�

∗
−〈Q〉−κ (as stated in example 4 one

has 〈Q〉κψ(H0)�
∗
−〈Q〉−κ ∈ B(H) [21]).

An alternative approach consists in including the unbounded terms of Ũ in the operators
M(A�−)∗(λ) occurring in (23). For example, the contribution of Ũ2 to the result of
proposition 2 may be interpreted as 2πλ−1M(A�−)∗Ũ2

(λ)M(A�−)∗(λ)
∗, that of (i/2)P · QU2

as iπλ−1 ∑n
j=1 M(A�−)∗Pj (λ)M(A�−)∗QjU2(λ)

∗. The operators MC(λ) occurring in these
expressions are well defined: three of them are of the formM(A�−)∗θ (λ) discussed in examples
4 and 5, and M(A�−)∗Pj (λ) is treated by an argument similar to that in example 5 by observing
that PjA�−E0(J ) = APjψ(H)〈Q〉κ ×〈Q〉−κ�−E0(J )− i(∂jA)�−E0(J ), which shows that
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PjA�− is locally H0-smooth on R+. If κ > n/2, each of the above four operators MC(λ) is
Hilbert–Schmidt.

If V satisfies (Cκ,n), then Xj := QjU2 belongs to L∞(Rn) + Lq(Rn) with q > n, so that
XjPj (H + m)−1 = Xj(H0 + m)−1/2 × Pj (H0 + m)1/2(H + m)−1 ∈ B(H). Hence

XjPjA(H + m)−1〈Q〉κ = XjPj (H + m)−1[A〈Q〉κ − (�A)(H + m)−1〈Q〉κ
− 2i(∇A) · P(H + m)−1〈Q〉κ ] ∈ B(H)

(take into account lemma 1). This allows one to define M(A�−)∗PjQjU2(λ) as
M(A�−)∗PjQjU2(λ) = (λ + m)M(H0+m)−1(A�−)∗PjQjU2(λ) = (λ + m)M(〈Q〉−κ�−)∗ × [XjPjA(H +
m)−1〈Q〉κ ]∗.

If V satisfies (Cκ) with κ > n/2, then the contributions from Ũ2 and (i/2)P ·
QU2/2 to τ(λ), equation (26), may also be written as −iλ−1 Tr[Ũ2A(Rλ+i0 − Rλ−i0)A]
and (2λ)−1 ∑n

j=1 Tr[QjU2A(Rλ+i0 − Rλ−i0)APj ], respectively, where the operators like
QjU2ARλ± i0APj are well defined in B(H); see lemma 9 below for details. If V decays
exponentially (condition (Eα,n)), one may then obtain a Breit–Wigner type approximation,
as in section 6, by evaluating the traces in an orthonormal basis {ek} consisting of functions
belonging to the Schwartz space S(Rn). For example, with the assumptions and notations of
section 6, one finds that

Tr[QjU2A(Rλ+i0 − Rλ−i0)APj ] =
∑
k

〈QjU2ek, (Kλ+i0 −Kλ−i0)Pj ek〉

= 2π i
∑
k

〈
QjU2ek,

(
I + Wo

λ+i0

)−1∗
MA(λ)

∗MA(λ)
(
I + Wo

λ+i0

)−1
Pjek

〉

� 2π i

|a|2[(λ− λo)2 + �2]

∑
k

〈QjU2ek|η〉〈χ |MA(λ)
∗MA(λ)|χ〉〈η|Pjek〉

= 2π i

|a|2[(λ− λo)2 + �2]
‖MA(λ)χ‖2Tr{|QjU2η〉〈Pjη|}

= 2π i

|a|2[(λ− λo)2 + �2]
‖MA(λ)χ‖2〈Pjη,QjU2η〉.

Here we used the fact that η ∈ D(QjU2) ∩ D(Pj ) (see lemma 9). By treating in
this way each contribution from (A.1) to Ũ , one sees that the approximation (62) is
valid for all potentials satisfying condition (Eα,n), provided that 〈η, Ũη〉 is interpreted as
〈ηŨ1η〉 + 〈η, Ũ2η〉 + (i/2)

∑n
j=1[〈Pjη,QjU2η〉 − 〈QjU2η, Pjη〉] .

To present the details mentioned above, we introduce the following set A of closed
operators: A = {Pj , θ}, where θ varies over the class multiplication operators by functions
θ ∈ L∞(Rn) + Lq(Rn) with q > n. In the applications mentioned above, θ is one of the
operators I, Ũ2 and QjU2 (j = 1, . . . , n). If F is an operator from A, then F(H0 + m)−1/2

and FA(H0 + m)−1/2 belong to B(H) (take into account lemma 3.13 of [22]). It follows
that F(H +m)−1/2 and FA(H +m)−1/2 belong to B(H) (because (H0 + m)1/2(H + m)−1/2 is
bounded; see proposition 9 in the appendix to IX.4 of [32]). It follows in particular that, if
F1 and F2 are operators from A, then F1AR

o
zAF2 and F1ARzAF2 are well defined, bounded

operators for each z ∈ C\σ(H). Also, as seen before, FA�− is locally H0-smooth on
R+ for F ∈ A, so that the operators M(A�−)∗F (λ) are well defined. They belong to the
Hilbert–Schmidt class if κ > n/2.

Lemma 9. (a) Let V satisfy condition (Cκ.n) with κ > n/2, and let F1 and F2 be operators
from A. Then, for λ > 0, the limits limε→+0 F1AR

o
λ± iεAF2 and F1ARλ± iεAF2 exist in
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norm and define bounded operators denoted F1AR
o
λ± i0AF2 and F1ARλ± i0AF2, respectively.

Furthermore

M(A�−)∗F1(λ)
∗M(A�−)∗F2(λ) = 1

2π i
[F1ARλ+i0AF2 − F1ARλ−i0AF2] ∈ B1(H). (A.4)

Also R(Kλ± i0) ⊆ D(F1), F1Kλ± i0 ∈ B(H) and F1ARλ± i0AF2 is equal to the closure of
F1Kλ± i0F2.
(b) Let V satisfy condition (Eα,n). Let z ∈ � and g ∈ R

(
Ŵ o+∗

z

)
. Then g ∈ D(F ) for each

F ∈ A, in particular g ∈ D(Pj ) ∩ D(U) ∩ D(QjU). Furthermore, Ŵ o+∗
z g = K̂o+∗

z Ug and
UŴo+∗

z g = Ŵ o−
z̄ Ug.

Proof. (a) The operators 〈Q〉−κRλ± iε〈Q〉−κ have limits in norm as ε → +0. Taking in (17)
N = 〈Q〉−κ and C = FA, with F ∈ A, one finds that FARλ± iε〈Q〉−κ have limits in norm.
In particular, limε→+0 F1ARλ± iεA and limε→+0〈Q〉−κRλ± iεAF2 exist in norm. Next, taking
N = AF2 andC = F1A in (17), one arrives at the existence in norm of limε→+0 F1ARλ± iεAF2.
Since F1 is closed and defined on the range of ARλ± iεA, the limit of F1ARλ± iεA is equal
to F1Kλ± i0, with R(Kλ± i0) ⊆ D(F1). The limit of F1ARλ± iεAF2 is just the closure of
F1Kλ± i0F2.

To verify (A.4), one follows the arguments of part (i) of the proof of lemma 3; it suffices
to write

F1A[Rλ+iε − Rλ−iε]Ep(H)AF2 = F1A(H + m)−1/2 × [(m + λ)(Rλ+iε − Rλ−iε)Ep(H)

+ iε(Rλ+iε + Rλ−iε)Ep(H)] × (H + m)−1/2AF2

and to observe that each term on the rhs converges to zero in norm as ε → 0.
(b) For F ∈ A consider the holomorphic B(H)-valued function Gz := Wo

z F = UARo
zAF

on C+. As in the proof of lemma 6(a) one finds that it has a holomorphic extension
in norm, denoted Ĝz, to C+ ∪ �; the operator MAF (λ) that will occur in the equation
corresponding to (47) has been studied in lemma 5 if F = θ , and for F = Pj we just
have MAPj (λ) = MPjA(λ)− iM(∂jA)(λ), with [MPjA(λ)f ](ω) = √

λωj [MA(λ)f ](ω).
Now let g ∈ R

(
Ŵ o+∗

z

)
, g = Ŵ o+∗

z h for some h ∈ H. For f ∈ D(F ) and ζ ∈ C+, we have〈
h,Wo

ζ Ff
〉 = 〈h,Gζf 〉. By analytic continuation this implies that

〈
h, Ŵ o+

z Ff
〉 = 〈h, Ĝzf 〉,

so that 〈g, Ff 〉 = 〈
Ŵ o+∗

z h, Ff
〉 = 〈Ĝ∗

zh, f 〉. This shows that g ∈ D(F ). From lemma 6(d)
we have, for each f ∈ H,〈

f, Ŵ o+∗
z g

〉 = 〈
UK̂o+

z f, g
〉 = 〈

f, K̂o+∗
z Ug

〉
,

which shows that Ŵ o+∗
z g = K̂o+∗

z Ug = K̂o−
z̄ Ug. It follows that UŴo+∗

z g = UK̂o−
z̄ Ug =

Ŵ o−
z̄ Ug. �

Proof of lemma 4.
(i) We have∫
�

db〈U(b)g, YU(b)g〉 =
∫
�

db
∫
�(g)

dλ〈X1(λ)
∗[U(b)g]λ,X2(λ)

∗[U(b)g]λ〉K

=
∫
�

db
∫
�(g)

dλ
∫
O
m(dξ){X1(λ)∗[U(b)g]λ}(ξ){X2(λ)

∗[U(b)g]λ}(ξ). (A.5)

Let us denote the integrand on the rhs of (A.5) by J (b, λ, ξ). Then∫
�

db
∫
�(g)

dλ
∫
O
m(dξ)|J (b, λ, ξ)|

= 〈|{X1(λ)
∗[U(b)g]λ}(ξ)|, |{X2(λ)

∗[U(b)g]λ}(ξ)|〉L2(�×�(g)×O)

� ‖{X1(λ)
∗[U(b)g]λ}(ξ)‖L2(�×�(g)×O)‖{X2(λ)

∗[U(b)g]λ}(ξ)‖L2(�×�(g)×O).

(A.6)
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(ii) For j = 1, 2, we denote the integral kernel of Xj(λ)
∗ by Xj (λ; ξ, ω). Let us show that the

functions

(b, λ, ξ) 
→ Gj (b, λ, ξ) := {Xj(λ)
∗[U(b)g]λ}(ξ)

=
∫
Sn−1

e−i
√
λω·bXj (λ; ξ, ω)gλ(ω) dω (A.7)

belong to L2(� × �(g) × O). For this we introduce in (A.7) a new integration variable u,
namely, the orthogonal projection of ω onto the hyperplane �. This change of variables is
possible by the assumption on the support of g̃, and it is given by u = ω − (ω · ωo)ωo (hence
ω(u) = u +

√
1 − u2ωo, with u in the unit ball of �). Observing that dω = [ω · ωo]−1 du, we

then have

Gj (b, λ, ξ) =
∫
�

du e−i
√
λu·b[ω(u) · ωo]−1Xj (λ; ξ, ω(u))gλ(ω(u))

= (2π)(n−1)/2
(
F�

[
(ω(u) · ωo)−1Xj (λ; ξ, ω(u))gλ(ω(u))

])
(
√
λb) (A.8)

where F� denotes (n − 1)-dimensional Fourier transformation in �. By using the Parseval
identity for F�, one obtains that∫
�(g)

dλ
∫
O
m(dξ)

∫
�

db|Gj (b, λ, ξ)|2 = (2π)n−1
∫
�(g)

λ−(n−1)/2 dλ
∫
O
m(dξ)

×
∫
�

du|[ω(u) · ωo]−1Xj (λ; ξ, ω(u))gλ(ω(u))|2

= (2π)n−1
∫
�(g)

λ−(n−1)/2 dλ
∫
O
m(dξ)

∫
Sn−1

dω|[ω · ωo]−1|Xj (λ; ξ, ω)gλ(ω)|2

� c(g)

∫
�(g)

dλ‖Xj(λ)‖2
2 < ∞,

where c(g) is a finite constant depending on the support of g and on ‖g̃‖L∞ .
(iii) From (A.6) and the result of (ii) we see that J (b, λ, ξ) is absolutely integrable. Thus we
may interchange order of integration in (A.5). Integrating first over db, we get the integral∫
�

db{X1(λ)∗[U(b)g]λ}(ξ){X2(λ)
∗[U(b)g]λ}(ξ) =

∫
�

db G1(b, λ, ξ)G2(b, λ, ξ).

For almost all λ and ξ , the integrand belongs to L1(�) and, as a function of b, is equal to
the scalar product in L2(�) of two functions each of which is a Fourier transform, by (A.8).
Hence by the Parseval identity∫
�

db G1(b, λ, ξ)G2(b, λ, ξ)

= (2π)n−1

λ(n−1)/2

∫
�

du[ω(u) · ωo]−2X1(λ; ξ, ω(u))gλ(ω(u))X2(λ; ξ, ω(u))gλ(ω(u))

= (2π)n−1

λ(n−1)/2

∫
Sn−1

dω[ω · ωo]−1X1(λ; ξ, ω)gλ(ω)X2(λ; ξ, ω)gλ(ω).

Upon applying
∫
�(g)

dλ
∫
O m(dξ) to this expression and observing that Xj(λ;ω, ξ) =

Xj (λ; ξ, ω) (see (39)), one obtains the result of the lemma. It is easy to check, as in (ii)
above, that the integrand belongs to L1(�(g)× O × Sn−1), permitting the interchange of the
order of integration). �
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[17] Cycon H L, Froese R G, Kirsch W and Simon B 1987 Schrödinger Operators with Application to Quantum

Mechanics and Global Geometry (Berlin: Springer)
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[19] Kato T 1968 Smooth operators and commutators Stud. Math. 31 535–46
[20] Amrein W O, Jauch J M and Sinha K B 1977 Scattering Theory in Quantum Mechanics (Reading, MA:

Benjamin)
[21] Jensen A and Nakamura S 1992 Mapping properties of wave and scattering operators of two-body Schrödinger

operators Lett. Math. Phys. 24 295–305
[22] Amrein W O 1981 Nonrelativistic Quantum Dynamics (Dordrecht: Reidel)
[23] Reed M and Simon B 1972 Methods of Modern Mathematical Physics: I. Functional Analysis (New York:

Academic)
[24] Kato T 1980 Perturbation Theory for Linear Operators (New York: Springer)
[25] Nussenzveig H M 1972 Time delay in quantum scattering Phys. Rev. D 6 1534–42
[26] Dollard J D 1969 Scattering into cones: I Commun. Math. Phys. 12 193–203
[27] Jensen A 1980 Resonances in an abstract analytic scattering theory Ann. Inst. Henri Poincaré Phys. Théor. 33
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